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The process of heat propagation in a porous solid for evaporative cooling of a plate, a cylinder, and a
sphere is analyzed.

The question of the analytic calculation of the process of porous cooling has still not been sufficiently explored in
the technical literature. Only problems of plates and cylinders [1-7] with fixed temperatures at the cold and hot surfaces
have been examined.

Here the temperature distribution in a solid porous wall with a flow of liquid or gas to the hot surface is analytical-
ly investigated for three different bodies — an infinite plate, a thin-walled cylindrical tube, and a thin-walled hollow
sphere. It is assumed that in the two latter cases the cooling component flows uniformly in the direction from the axis of
the cylinder and the center of sphere to the walls. We shall adopt the mechanism of interaction between the skeleton of
the solid and the fluid proposed in [1]. The real capillary structure of the solid is replaced by an equivalent system con-
sisting of uniform parallel cylindrical channels through which the cooling liquid or gas flows. The temperatures of skele-
ton and coolant are assumed to be identical at every point. It is also assumed that heat transfer within the specimen
takes place by heat conduction in the skeleton and the coolant. The coefficients A, Ap, and Cy, and the density of the

. liquid are assumed constant,

We shall set up the differential equation describing the process in question by equating the quantity of heat accu-
mulating in a element of volume of the body due to heat conduction with the quantity of heat that goes into changing
the enthalpy of the liquid. For the thin-walled cylinder and sphere, the flux density j,, over the thickness of the wall is
assumed constant. In the case of a one-dimensional temperature field and symmetrical steady-state heat transfer we ob-
tain the following differential equation, which must be satisfied by the témperature of the porous solid:
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In Eq. (1), the terms with the multiplier £ = ji,C; /Aeff characterize the change inenthalpy of the liquid, the
other two terms determine the heat conductivity of the porous.body.

For evaporative porous cooling the boundary conditions take the following form:

t=t; for n=x=—23 (plate),
t=1t for m=r=r; (cylinder and sphere), @)
A= et gy for q=x=—d, = =1 ®
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where At = t; — ty; A if the effective thermal conductivity of the solid and liquid phases occupying the volume of the
body (Aeff = Ag(1—P) + ALP).

According to (3), the heat supplied to the hot surface of the wall is spent on warming up the body by heat conduc-
tion and on varporizing liquid. If we take the gas as the inert component transmitted through the porous wall, its ther-
mal conductivity can be neglected when Ay > A Then Aeff = Ag(1 — P). Furthermore, pjm = 0.

On solving differential equation (1) with boundary conditions (2) and (3) for a plate, a cylinder, and a sphere, re-
spectively, we obtain ‘
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fsph= £y (1 — 757 By 1% expyra) exp iy (r — ) ] +
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ry Iy
E;(n) is the integro-exponential function tabulated in [8].

In a number of practical cases it is necessary to calculate the temperature of the wall ty on the cold side analyti-
cally. Accordingly, we set up the heat balance for the regions —e = x = —§ (plate) and 0 =r =1y (cylinder and sphere),

as a result of which we obtain the following differential equation, which must be satisfied by the temperature of the in-
cident flow:
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where £ = JCL/AL.

The values of J (for a plate Tp1= ime for a cylinder J ., = j 1y, and for a sphere Jgp = finr} ) are characterized,
respectively, by the flux density per unit area and per unit 1éngth and by the total mass flow rate of the cooling compo-
nent. The parameter jf; is determined by the flow of liquid in the section for r =15,

Boundary conditions for (7) can be represented in the form

IL=1, for X=-—o0 (plate), (8)
{y, =1, for r =10 (cylinder and sphere),
f dt
xL—dL—:keff for m=x=—3, n=r=0. (9)
dy d

The latter condition assumes equality of the heat fluxes at the phase interface, i.e., at the boundary of contact
between the liquid and the free surface of the body.

The solution of (7) with boundary conditions (8) and (9) is:

trpi=(aA ¢ —p ) (A, &) exp [Epi(x+ 8) —£,8) + 4, a0
treyl= A= (r/r) eyilhefibo ti(r L — expE A7) 4
+ oAt —pjul + &, a1
trsph= (A*) 7 exp (—Epn/r) [hestBo by (F30% —
—expEyAr) + aAt; 0 iml =+ o, (12)
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Taking into account that t; | y=_g = t; (plate), and t; | =0 = t1(cylinder and sphere), from (10)-(12) we find the
temperature 1y for the three bodies investigated:

tipt= (EpLAL) " (@A — p jm) €XP (—&ub) + Lo, @a3)
teyl=(CAsEcyrfotad t —p jm) [Bwheffexp(E,A NI (14)
hsph= (S*ALEsphp 081 — p jm) [Ew hetreXP(EA T . (15)

Thus, the value of t; in (4)-(6) can be determined from relations (13)-(15).

From an analysis of solutions (4)-(6) and (13)-(15) it follows that for large values of the heat capacity of the liquid
(CL, — «) the temperature of the plate, thin-walled cylinder, or sphere approaches the temperature of the cooling liquid

(gas) to.

The temperature of the wall tends to ty if jm — o0; however, in this case, as follows from boundary condition (3)
and the solutions for t and t;, an abrupt temperature change occurs at the hot surface of the body. When Ay — o, for the
temperature of the wall we have

r r \*
tol=ly + ¥, teyl= to’;'l— +v, fph= to(—r‘l‘) + v,
. 2
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where y = (At — pjm)/Cij.
NOTATION '

n — space coordinate; I" — constant (for an infinite plate I' = 0; n =x; for an infinite cylinder I'=1, 7 =1; for a
sphere I = 2, 7 =r1); 6 — thickness of plate; t;, t;, t, — respectively, temperature of surrounding medium and wall on
cold and hot sides; t, — temperature of cooling liquid at an infinite distance from cold surface of plate, on axis of cylin-
der or at center of sphere; p — heat of vaporization; A; and Aj, — thermal conductivities of skeleton of solid and cooling
liquid, respectively; P — porosity of body; ry and 1, — inside and outside radii of cylinder and sphere, respectively; K =
= 1/r.
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